lattice isomorphic - significado y definición. Qué es lattice isomorphic
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es lattice isomorphic - definición

Computably isomorphic

Lattice QCD         
QUANTUM CHROMODYNAMICS ON A LATTICE
QCD lattice model; Lattice qcd; Lattice quantum chromodynamics; Lattice Quantum Chromodynamics; Lattice chromodynamics; LQCD
Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time.
Bravais lattice         
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Monoclinic, centered
  • Cubic, body-centered
  • Cubic, face-centered
  • Cubic, simple
  • Hexagonal
  • Monoclinic, simple
  • Orthorhombic, base-centered
  • Orthorhombic, body-centered
  • Orthorhombic, face-centered
  • Orthorhombic, simple
  • Rhombohedral
  • Tetragonal, body-centered
  • Tetragonal, simple
  • Triclinic
AN INFINITE ARRAY OF DISCRETE POINTS IN THREE DIMENSIONAL SPACE GENERATED BY A SET OF DISCRETE TRANSLATION OPERATIONS
Crystal lattice; Bravais lattices; Bravais Lattices; Crystalline lattice; Space lattice; Crystallographic lattice; Bravais flock; Crystal lattices
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
crystal lattice         
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Monoclinic, centered
  • Cubic, body-centered
  • Cubic, face-centered
  • Cubic, simple
  • Hexagonal
  • Monoclinic, simple
  • Orthorhombic, base-centered
  • Orthorhombic, body-centered
  • Orthorhombic, face-centered
  • Orthorhombic, simple
  • Rhombohedral
  • Tetragonal, body-centered
  • Tetragonal, simple
  • Triclinic
AN INFINITE ARRAY OF DISCRETE POINTS IN THREE DIMENSIONAL SPACE GENERATED BY A SET OF DISCRETE TRANSLATION OPERATIONS
Crystal lattice; Bravais lattices; Bravais Lattices; Crystalline lattice; Space lattice; Crystallographic lattice; Bravais flock; Crystal lattices
¦ noun the symmetrical three-dimensional arrangement of atoms inside a crystal.

Wikipedia

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.